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Stochastic and Coherence Resonance in Hippocampal Neurons 
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Neural Engineering Center, Department of Biomedical Engineering and Neurosciences 

Case Western Reserve University, Cleveland, OH 
 
Abstract-Stochastic Resonance (SR) is a phenomenon observed 
in nonlinear systems whereby the introduction of noise 
enhances the detection of subthreshold signals. Both computer 
simulations and experimental recordings in the hippocampal 
brain slice have shown that stochastic resonance could play a 
significant role to enhance the detection of synaptic potentials 
generated in distal synapses. The noise variance required to 
improve synaptic detection in CA1 neurons is well within the 
physiological range of the noise generated by endogenous 
sources.  Intracellular recordings in CA1 pyramidal cells 
confirmed that subthreshold signals could be detected with the 
generation of small amplitude endogenous noise in single cells. 
Computer simulations have been applied to test the hypothesis 
that the effect of stochastic resonance is enhanced when the 
noise and subthreshold signals are applied to several neurons 
at the same time. Computer simulation of the coupled network 
of hippocampal neurons did reveal a marked improvement in 
signal detection when independe nt noise sources were applied 
to multiple neurons. However, the addition of noise to a 
coupled neuronal network also revealed the appearance of 
synchronized neural activity similar to epilepsy. This recently 
observed phenomenon, known as coherence resonance, is 
responsible for the appearance of spontaneous neuronal 
activity and decreases the signal to noise ratio of subthreshold 
synaptic inputs. 
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I. INTRODUCTION 
 

Stochastic resonance (SR) is known to enhance signal 
detection of subthreshold signals in many non-linear 
systems. Both a threshold and noise are required to generate 
this effect. Since neurons do have a threshold and are known 
to operate in the presence of significant amount of noise, 
stochastic resonance should play a significant role in the 
detection of subthreshold synaptic inputs. Both computer 
simulations and experimental evidence show that noise can 
enhance the detection of synaptic inputs located in distal 
locations in the dendritic tree [1]. ]. This phenomenon was 
observed intracellularly and the noise required to generate 
this effect is well within the physiological noise amplitude 
know to be present within neurons [2]. However, neurons 
are arranged in arrays and the effect of SR could be 
enhanced significantly when both noise and signals are 
applied to many neurons. This phenomenon (Array 
enhanced SR) has been previously analyzed [3] and 
coupling between elements is known to affect the signal 
detected. In this paper, we have analyzed the effect of SR on 
synaptic signal detection in a model of hippocampal neural 
network. The effect of noise and coupling on detection was 
measured using computational models. We also investigated 
the effect of noise on the synchronization of the neuronal 
population. As noise is added to a coupled array of 
oscillators, spontaneous synchronization is generated in the 

absence of any input [4]. This phenomenon known as 
coherence resonance was observed in the hippocampal array. 
The amount of synchronization and its effect on stochastic 
resonance was studied as a function of noise amplitude and 
coupling between neurons. 
 

II. METHODOLOGY  
 

All simulations were carried out using the NEURON 
Software [5]. The hippocampal CA1 models have been 
previously described [1] and contained a soma with sodium 
calcium and four potassium channels as well as passive 
dendrites. The neurons were connected using AMPA type, 
en-passant synaptic connections between neurons. The input 
(2.5Hz) was applied either globally or to single cells. The 
noise was generated by random events (Poisson distributed) 
at each synapse and the noise variance was modulated by the 
maximum synaptic conductance (gmax = 0.2nS or 1nS) and 
by the mean firing frequency of the synapse. Noise synapses 
were either independent or located on en passant axons. The 
number, location and firing time of each synapse was 
random. Coupling between each cell was implemented by 
adding a coupling current (Icoupling) term shown below: 

where a is an arbitrary constant, cij, the coupling strength 
drawn for a uniform probability density function (fc).  The 
response of the network was assessed by summing the 
voltage from all the neurons. The signal was processed to 
detect action potential. The signal to noise ratio was 
calculated by calcula ting the power at 2.5Hz and dividing by 
the baseband power near 2.5 Hz. 
 

III. RESULTS 
 

Effect of multiple detecting neurons:  The addition of noise 
to the network clearly allowed the detection of subthreshold 
signals for a single cell and could be modeled by the typical 
SR curve [2]. As the number of cells involved was 
increased, the signal to noise ratio (SNR) improved further 
and the peak value of the SNR increased as shown in Table 
1. As the maximum amplitude of the noise was increased 
(1nS), the detection of the signal dropped significantly. This 
effect could be attributed not only to the increase in the 
variance of the noise but also to spontaneous oscillatory 
behavior of the network.  
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Table 1. Signal to noise ratio (SNR) for multiple cells involved in the 
detection of the subthreshold input signal in the presence of low (0.2nS) 

and high (1nS) noise variance . 
# Cells 1 5 10 

Peak SNR (0.2nS) 174  467 467 
Peak SNR (1nS) 13 79 85 

 
Effect of coupling: As coupling between the neurons was 

increased (Cmax = 0.5), the ability of the network to detect 
the signal increased significantly with SNR values as high as 
1100. However, as the noise amplitude increase (1nS), the 
SNR dropped since the combination of high noise amplitude 
and coupling repetitive firing and oscillations. 

Coherence resonance: From the previous analysis of the 
stochastic resonance it is clear that the combination of noise 
and signal could generate spontaneous oscillations in the 
network. Since the signal was subthreshold, we then tested 
the hypothesis that noise alone applied to the CA1 
hippocampal neural network could cause synchronized 
oscillations. The degree of synchronization was estimated 
by calculating the power at the frequency of oscillations 
divided by the width of the spectrum peak at half the 
amplitude. With no coupling, all 10 cells fired 
asynchronously in the presence of noise. As coupling 
increased, the neurons fired synchronously and generated 
spontaneous oscillations (coherence resonance) at 
frequencies between 4 and 10Hz. The frequency increased at 
low noise amplitude and decreased for noise variances 
greater that 100pA2. The degree of synchronization was a 
function of both noise and coupling. The network did show 
significant amount of synchronization at low level of noise 
provided that the coupling was increased. Under these 
conditions, a single cell by itself would not fire but the 
network would generate spontaneous oscillations at low 
frequency. Similarly, a neural network with low coupling 
and high noise can also produce spontaneous oscillatory 
activity when noise variance is increased. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUSION 
 

The results of the simulation clearly indicate that the 
signal detection of subthreshold signals is improved when 
more than one neurons is involved in the detection. 
Therefore, stochastic resonance is amplified in the 
hippocampal neuronal network by both the number of 
neurons involved and the coupling between them. However, 
noise applied to neural networks can generate synchronized 
oscillations that significantly decrease the SNR. These 
oscillations occur at physiological frequencies and the 
waveforms are similar to epileptiform activity observed in 
hippocampal slices. Therefore, this noise-induced 
synchronization could underlie the abnormal neural 
epileptifo rm activity in the hippocampus. 
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